Combined lime and biochar application enhances cowpea growth and yield in tropical Alfisol

Author:

Adekiya Aruna Olasekan,Ayorinde Bolajoko Bisola,Ogunbode Timothy

Abstract

AbstractIt is essential to increase the pH of tropical soils in order to reduce acidity and promote soil and crop productivity. Therefore, experiments were carried out in 2020 and 2021 to assess the impacts of biochar and lime on the chemical properties, growth, nodulation, and yield of cowpea (Vigna unguiculata). The study involved various levels of lime (CaCO3) and wood biochar (ranging from 0 to 10 t ha−1), organized in a factorial combination. The treatments were arranged in a randomized complete block design and replicated three times. The application of lime and biochar, either separately or in combination, led to improvements in soil chemical properties such as pH, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), and cation exchange capacity (CEC), as well as enhancements in the growth, nodulation, and yield of cowpea when compared to the control. Lime and biochar alone and combined reduced exchangeable acidity (Al + H) relative to the control. Cowpea yield increased with lime rate up to a point, but then decreases. The highest cowpea yield is achieved at a lime rate of 2.5 t ha−1, whereas cowpea yield increased as the Biochar rate increased from 0 up to 10 t ha−1. There was a significant correlation between pH and cowpea pod weight in both years (2020 and 2021). The R values were − 0.615 and − 0.444 for years 2020 and year 2021 respectively at P < 0.05. At higher lime levels combined with biochar, there were considerable reductions in cowpea yield, and this decrease can be attributed to unfavorable soil pH conditions. Relative to 2.5 t ha−1 lime + 5 t ha−1 biochar, 10 t ha−1 lime + 10 t ha−1 biochar, reduced cowpea grain yield by 853% in 2020 and 845% in 2021. Since there were no significant differences between the effects of 2.5 t ha−1 lime + 5 t ha−1 biochar, 2.5 t ha−1 lime + 7.5 t ha−1 biochar, and 2.5 t ha−1 lime + 10 t ha−1 biochar applications on cowpea yield, therefore to prevent waste of Biochar, 2.5 t ha−1 lime + 5 t ha−1 biochar is recommended for production of cowpea.

Publisher

Springer Science and Business Media LLC

Reference54 articles.

1. Robarge, W. P. Acidity. In: Encyclopedia of Soil Science, Encyclopedia of Earth Sciences Series (ed Ward Chesworth) 860pp (2008).

2. Kochian, V., Hoekenga, A. & Pineros, A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55, 459–493 (2004).

3. Adekiya, A. O. Improving tropical soil productivity and cowpea (Vigna unguiculata (L.) Walp) performance using biochar and phosphorus fertilizer. Commun. Soil Sci. Plant Anal. 53(21), 2797–2811 (2022).

4. Menzies, N. W. Toxic elements in acid soils: Chemistry and measurement. In Handbook of Soil Acidity (ed. Rengel, Z.) 267–296 (University of Western Australia, 2003).

5. Sylvia, D. M., Fuhrmann, J. J., Hartel, P. G. & Zuberer, D. A. Principles and Applications of Soil Microbiology (No. QR111 S674 2005) (Pearson Prentice Hall, Upper Saddle River, NJ) (2005).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3