Author:
Tortorella Attila,Leone Linda,Lombardi Angelina,Pizzo Elio,Bosso Andrea,Winter Roland,Petraccone Luigi,Del Vecchio Pompea,Oliva Rosario
Abstract
AbstractThe misuse of antibiotics has led to the emergence of drug-resistant pathogens. Antimicrobial peptides (AMPs) may represent valuable alternative to antibiotics; nevertheless, the easy degradation due to environmental stress and proteolytic enzyme action, limits their use. So far, different strategies have been developed to overcome this drawback. Among them, glycosylation of AMPs represents a promising approach. In this work, we synthesized and characterized the N-glycosilated form of the antimicrobial peptide LL-III (g-LL-III). The N-acetylglucosamine (NAG) was covalently linked to the Asn residue and the interaction of g-LL-III with bacterial model membranes, together with its resistance to proteases, were investigated. Glycosylation did not affect the peptide mechanism of action and its biological activity against both bacteria and eukaryotic cells. Interestingly, a higher resistance to the activity of proteolytic enzymes was achieved. The reported results pave the way for the successful application of AMPs in medicine and biotechnological fields.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献