Classification with 2-D convolutional neural networks for breast cancer diagnosis

Author:

Sharma Anuraganand,Kumar Dinesh

Abstract

AbstractBreast cancer is the most common cancer in women. Classification of cancer/non-cancer patients with clinical records requires high sensitivity and specificity for an acceptable diagnosis test. The state-of-the-art classification model—convolutional neural network (CNN), however, cannot be used with such kind of tabular clinical data that are represented in 1-D format. CNN has been designed to work on a set of 2-D matrices whose elements show some correlation with neighboring elements such as in image data. Conversely, the data examples represented as a set of 1-D vectors—apart from the time series data—cannot be used with CNN, but with other classification models such as Recurrent Neural Networks for tabular data or Random Forest. We have proposed three novel preprocessing methods of data wrangling that transform a 1-D data vector, to a 2-D graphical image with appropriate correlations among the fields to be processed on CNN. We tested our methods on Wisconsin Original Breast Cancer (WBC) and Wisconsin Diagnostic Breast Cancer (WDBC) datasets. To our knowledge, this work is novel on non-image tabular data to image data transformation for the non-time series data. The transformed data processed with CNN using VGGnet-16 shows competitive results for the WBC dataset and outperforms other known methods for the WDBC dataset.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3