Author:
Chen Jingya,Gu Hailei,zhang Yu,Fan Weimin,Chen Shuai,Wang Yajing,Wu Ting,Tang Wenwei,Wang Zhongqiu
Abstract
AbstractCurrently, there are no effective approaches for differentiating ovarian fibrothecoma (OF) from broad ligament myoma (BLM). This retrospective study aimed to construct a nomogram prediction model based on MRI to differentiate OF from BLM. The quantitative and qualitative MRI features of 41 OFs and 51 BLMs were compared. Three models were established based on the combination of these features. The ability of the models to differentiate between the two cancers was assessed by ROC analysis. A nomogram based on the best model was constructed for clinical application. The three models showed good performance in differentiating between OF and BLM. The areas under the curve (AUC) of the models based on quantitative and qualitative variables were 0.88 (95% CI: 0.79–0.96) and 0.85 (95% CI: 0.76–0.93), respectively. The combined model designed from the significant variables exhibited the best diagnostic performance with the highest AUC of 0.92 (95% CI: 0.86–0.98). Calibration of the nomogram showed that the predicted probability matched the actual probability well. Analysis of the decision curve demonstrated that the nomogram was clinically useful. Relative T1 value, stone paving sign, enhancement patterns, and ascites were identified as valuable predictors for identifying OF or BLM. The MRI-based nomogram can serve as a preoperative tool to differentiate OF from BLM.
Funder
Postgraduate Research & Practice Innovation Program of Jiangsu Province
Nature Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献