Mechanically-flexible wafer-scale integrated-photonics fabrication platform

Author:

Notaros Milica,Dyer Thomas,Garcia Coleto Andres,Hattori Ashton,Fealey Kevin,Kruger Seth,Notaros Jelena

Abstract

AbstractThe field of integrated photonics has advanced rapidly due to wafer-scale fabrication, with integrated-photonics platforms and fabrication processes being demonstrated at both infrared and visible wavelengths. However, these demonstrations have primarily focused on fabrication processes on silicon substrates that result in rigid photonic wafers and chips, which limit the potential application spaces. There are many application areas that would benefit from mechanically-flexible integrated-photonics wafers, such as wearable healthcare monitors and pliable displays. Although there have been demonstrations of mechanically-flexible photonics fabrication, they have been limited to fabrication processes on the individual device or chip scale, which limits scalability. In this paper, we propose, develop, and experimentally characterize the first 300-mm wafer-scale platform and fabrication process that results in mechanically-flexible photonic wafers and chips. First, we develop and describe the 300-mm wafer-scale CMOS-compatible flexible platform and fabrication process. Next, we experimentally demonstrate key optical functionality at visible wavelengths, including chip coupling, waveguide routing, and passive devices. Then, we perform a bend-durability study to characterize the mechanical flexibility of the photonic chips, demonstrating bending a single chip 2000 times down to a bend diameter of 0.5 inch with no degradation in the optical performance. Finally, we experimentally characterize polarization-rotation effects induced by bending the flexible photonic chips. This work will enable the field of integrated photonics to advance into new application areas that require flexible photonic chips.

Funder

National Science Foundation Faculty Early Career Development (CAREER) Program

Defense Advanced Research Projects Agency (DARPA) VIPER Program

National Science Foundation Graduate Research Fellowship Program

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated Optical Phased Arrays for AR Displays, Biophotonics, 3D Printing, and Beyond;2024 IEEE Photonics Society Summer Topicals Meeting Series (SUM);2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3