Effects of climatic factors on COVID-19 transmission in Ethiopia

Author:

Endeshaw Fitsum Bekele,Getnet Fentabil,Temesgen Awoke Misganaw,Mirkuzie Alemnesh H.,Olana Latera Tesfaye,Alene Kefyalew Addis,Birhanie Solomon Kibret

Abstract

AbstractClimatic conditions play a key role in the transmission and pathophysiology of respiratory tract infections, either directly or indirectly. However, their impact on the COVID-19 pandemic propagation is yet to be studied. This study aimed to evaluate the effects of climatic factors such as temperature, rainfall, relative humidity, sunshine duration, and wind speed on the number of daily COVID-19 cases in Addis Ababa, Ethiopia. Data on confirmed COVID-19 cases were obtained from the National Data Management Center at the Ethiopian Public Health Institute for the period 10th March 2020 to 31st October 2021. Data for climatic factors were obtained from the Ethiopia National Meteorology Agency. The correlation between daily confirmed COVID-19 cases and climatic factors was measured using the Spearman rank correlation test. The log-link negative binomial regression model was used to fit the effect of climatic factors on COVID-19 transmission, from lag 0 to lag 14 days. During the study period, a total of 245,101 COVID-19 cases were recorded in Addis Ababa, with a median of 337 new cases per day and a maximum of 1903 instances per day. A significant correlation between COVID-19 cases and humidity was observed with a 1% increase in relative humidity associated with a 1.1% [IRRs (95%CI) 0.989, 95% (0.97–0.99)] and 1.2% [IRRs (95%CI) 0.988, (0.97–0.99)] decrease in COVID-19 cases for 4 and 5 lag days prior to detection, respectively. The highest increase in the effect of wind speed and rainfall on COVID-19 was observed at 14 lag days prior to detection with IRRs of 1.85 (95%CI 1.26–2.74) and 1.078 (95%CI 1.04–1.12), respectively. The lowest IRR was 1.109 (95%CI 0.93–1.31) and 1.007 (95%CI 0.99–1.02) both in lag 0, respectively. The findings revealed that none of the climatic variables influenced the number of COVID-19 cases on the day of case detection (lag 0), and that daily average temperature and sunshine duration were not significantly linked with COVID-19 risk across the full lag period (p > 0.05). Climatic factors such as humidity, rainfall, and wind speed influence the transmission of COVID-19 in Addis Ababa, Ethiopia. COVID-19 cases have shown seasonal variations with the highest number of cases reported during the rainy season and the lowest number of cases reported during the dry season. These findings suggest the need to design strategies for the prevention and control of COVID-19 before the rainy seasons.

Funder

National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference40 articles.

1. Rajgor, D. D., Lee, M. H., Archuleta, S., Bagdasarian, N. & Quek, S. C. The many estimates of the COVID-19 case fatality rate. Lancet Infect. Dis. 20, 776–777 (2020).

2. Onder, G., Rezza, G. & Brusaferro, S. Characteristics of patients dying in relation to COVID-19 in Italy. JAMA 323, 1775–1776 (2020).

3. World Health Organization. Coronavirus Disease 2019 (COVID-19) SITUATION Report-51 (2020a).

4. World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report-41 (2020b).

5. WHO. WHO Health Emergency Dashboard (2022).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3