Development of a rock-bit interaction analytical model by considering the in-situ stresses for a bottom-hole element

Author:

Zafarian Habiballah,Ameri Mohammad Javad,Dolatyari Alireza

Abstract

AbstractPDC drill bits are an important part of drilling engineering, but improper selection or design can lead to decreased performance and increased costs. Then, accurate modeling of rock-bit interaction for Oil/gas well drilling is critical. Although several mathematical models are presented for this purpose, they have not been able to present a comprehensive model for the rock-bit interaction. In-situ stresses in real drilling conditions affect the force required for rock failure. However, the models proposed so far either have not considered the effects of in-situ stresses or have assumed that the rock failure angle in the downhole conditions is equal to the one calculated in the atmospheric conditions. In this work, after reviewing the background of studies conducted on the rock and bit interaction, with an analytical method, stresses applied to the bottom hole element are examined, including stresses resulting from bit and in-situ stresses. Based on the principle of superposition, the total stress imposed on the bottom hole element is calculated to determine the angle and force of rock cutting. Finally, a novel mathematical model of rock-bit interaction in vertical and deviated oil/gas wells drilling by Considering In-Situ Stresses is presented. Also, the study compares the current model to the Nishimatsu and Xin Ling models using data from a southwest field in Iran. The results show that the simplifying assumption made by previous models leads to a significant underestimation of the failure angle and the amount of force required to the rock failure, with reductions of up to 21% and 48%, respectively, in the case of a vertical well. In an inclined well, the current model predicts cutting force at about 0.14 of that predicted by the previous model.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3