Author:
Wang Chunyu,Liu Yingze,Han Hao,Wang Desheng,Chen Jieyi,Zhang Renzhi,Zuo Shixiang,Yao Chao,Kang Jian,Gui Haoguan
Abstract
AbstractComplex pollutants are discharging and accumulating in rivers and oceans, requiring a coupled strategy to resolve pollutants efficiently. A novel method is proposed to treat multiple pollutants with C,N co-doped TiO2 hollow nanofibers coated stainless steel meshes which can realize efficient oil/water separation and visible light-drove dyes photodegradation. The poly(divinylbenzene-co-vinylbenzene chloride), P(DVB-co-VBC), nanofibers are generated by precipitate cationic polymerization on the mesh framework, following with quaternization by triethylamine for N doping. Then, TiO2 is coated on the polymeric nanofibers via in-situ sol–gel process of tetrabutyl titanate. The functional mesh coated with C,N co-doped TiO2 hollow nanofibers is obtained after calcination under nitrogen atmosphere. The resultant mesh demonstrates superhydrophilic/underwater superoleophobic property which is promising in oil/water separation. More importantly, the C,N co-doped TiO2 hollow nanofibers endow the mesh with high photodegradation ability to dyes under visible light. This work draws an affordable but high-performance multifunctional mesh for potential applications in wastewater treatment.
Funder
Natural Science Research of Jiangsu Higher Education Institutions of China
Talent Introduction Program of Changzhou University
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献