Agricultural land is the main source of stream sediments after conversion of an African montane forest

Author:

Stenfert Kroese Jaqueline,Batista Pedro V. G.,Jacobs Suzanne R.,Breuer Lutz,Quinton John N.,Rufino Mariana C.

Abstract

AbstractIn many parts of Africa, soil erosion is an important problem, which is evident from high sediment yields in tropical montane streams. Previous studies in Kenya pointed to a large contribution from catchments cultivated by smallholder farmers. This led to the hypothesis that unpaved tracks and gullies are the main sediment sources in smallholder agriculture catchments of the highlands of Kenya. The aim of this study was to investigate the sediment sources with sediment fingerprinting to generate the knowledge base to improve land management and to reduce sediment yields. Four main sediment sources (agricultural land, unpaved tracks, gullies and channel banks) and suspended sediments were analysed for biogeochemical elements as potential tracers. To apportion the catchments target sediment to different sources, we applied the MixSIAR un-mixing modelling under a Bayesian framework. Surprisingly, the fingerprinting analysis showed that agricultural land accounted for 75% (95% confidence interval 63–86%) of the total sediment. Channel banks contributed 21% (8–32%), while the smallest contributions to sediment were generated by the unpaved tracks and gullies with 3% (0–12%) and 1% (0–4%), respectively. Erosion management strategies should target agricultural lands with an emphasis on disconnecting unpaved tracks form hillslope source areas to reduce sediment yields to Lake Victoria.

Funder

German Federal Ministry of Economic Cooperation and Development

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3