Exploring soil bacterial diversity in different micro-vegetational habitats of Dachigam National Park in North-western Himalaya

Author:

Mushtaq HinaORCID,Ganai Bashir AhmadORCID,Jehangir ArshidORCID

Abstract

AbstractDachigam National Park (DNP), in Zabarwan mountains of north-western Himalaya constitutes a region of high biodiversity with greater endemism. DNP is known for its unique micro-climate together with distinct vegetational zones providing home to variety of threatened and endemic plant, animal, and bird species. However, studies on soil microbial diversity in fragile ecosystems of north-western Himalaya in general and DNP in particular are lacking. This was thus a maiden attempt to study variations in soil bacterial diversity of DNP with respect to changing soil physico-chemical properties, vegetation, and altitude. Soil parameters depicted significant variations among different sites with highest values for temperature, OC, OM and TN being 22.2 ± 0.75 °C, 6.53 ± 0.32%, 11.25 ± 0.54%, 0.545 ± 0.04% from site-2 (low altitudinal grassland site) in summer and lowest of 5.1 ± 0.65 °C, 1.24 ± 0.26%, 2.14 ± 0.45% and 0.132 ± 0.04% at site-9 (high altitudinal mixed pine site) in winter. Bacterial CFU showed significant correlations with soil physico-chemical attributes. This study led to the isolation and identification of 92 morphologically varied bacteria with the highest (15) from site-2 and lowest (04) from site-9 which post BLAST analysis (via 16S rRNA analysis) depicted presence of only 57 distinct bacterial species under taxonomic phylum, Firmicutes and Proteobacteria. Nine species were widely spread (i.e., isolated from > 3 sites), however, most bacteria (37) were restricted to a particular site. Diversity indices ranged between 1.380 to 2.631 (Shannon–Weiner’s index); 0.747 to 0.923 (Simpson’s index) with highest values for site-2 and lowest for site-9. Index of similarity was highest (47.1%) between riverine sites (site-3 and site-4) whereas two mixed pine sites (site-9 and site-10) showed no similarity.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3