Designing and fabrication of electrochemical nano-biosensor for the fast detection of SARS-CoV-2-RNA

Author:

Hussein Heba A.ORCID,Hanora Amro,Solyman Samar M.,Hassan Rabeay Y. A.ORCID

Abstract

AbstractSARS-CoV-2 caused a global panic among populations. Rapid diagnostic procedures for the virus are crucial for disease control. Thus, the designed signature probe from a highly conserved region of the virus was chemically immobilized onto the nanostructured-AuNPs/WO3-screen printed electrodes. Different concentrations of the matched oligonucleotides were spiked to test the specificity of the hybridization affinity whereas the electrochemical impedance spectroscopy was used for tracking the electrochemical performance. After a full assay optimization, limits of detection and quantification were calculated based on linear regression and were valued at 298 and 994 fM, respectively. Further, the high performance of the fabricated RNA-sensor chips was confirmed after testing the interference status in the presence of the mismatched oligos in one nucleotide and completely one. Worthy to mention that the single-stranded matched oligos can be hybridized to the immobilized probe in 5 min at room temperature. The designed disposable sensor chips are capable of detecting the virus genome directly. Therefore, the chips are a rapid tool for SARS-CoV-2 detection.

Funder

Animal Health Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3