Physiological mechanism of exogenous brassinolide alleviating salt stress injury in rice seedlings

Author:

Mu De-wei,Feng Nai-jie,Zheng Dian-feng,Zhou Hang,Liu Ling,Chen Guan-jie,Mu BaoMing

Abstract

AbstractBrassinolide (BR) is a sterol compound, which can regulate plant seed germination, flowering, senescence, tropism, photosynthesis, stress resistance, and is closely related to other signaling molecules. This study aimed to evaluate the ability of soaking with BR to regulate growth quality at rice seedling stage under salt stress. Results demonstrated that salt stress increases the contents of ROS, MDA, Na+ and ABA, reduces the the SPAD value, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum fluorescence (Fm), variable fluorescence (Fv), the effective photochemical efficiency of PSII (Fv/Fo) and the maximum photochemical efficiency of PSII (Fv/Fm), reduces the biomass production and inhabits plant growth. All of these responses were effectively alleviated by BR soaking treatment. Soaking with BR could increase the activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and the contents of ascorbic acid, glutathione as well as soluble protein and proline, while BR soaking treatment inhibited the accumulation of ROS and reduced the content of MDA. BR soaking significantly reduced the contents of Na+ and increased the contents of K+ and Ca2+, indicating that soaking with BR is beneficial to the excretion of Na+, the absorption of K+ and Ca2+ and the maintenance of ion balance in rice seedlings under salt stress. BR also maintained endogenous hormone balance by increasing the contents of indoleacetic acid (IAA), zeatin (ZT), salicylic acid (SA), and decreasing the ABA content. Soaking with BR significantly increased the SPAD value, Pn and Tr and enhanced the Fm, Fv/Fm and Fv/Fo of rice seedlings under NaCl stress, protected the photosythetic system of plants, and improved their biomass. It is suggested that BR was beneficial to protect membrane lipid peroxidation, the modulation of antioxidant defense systems, ion balance and endogenous hormonal balance with imposition to salt stress.

Funder

Guangdong Province Key Field R&D Program Project

Special project in key fields of general colleges and universities of Guangdong Provincial Department of Education

The Innovation Team Project of General Colleges and Universities of Guangdong Provincial Department of Education

Zhanjiang Innovation and Entrepreneurship Team Introduces "Pilot Plan"

Guangdong Ocean University scientific research start-up project

Guangdong Ocean University innovation and strong school project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3