Brazilian Maternal and Child Nutrition Consortium: establishment, data harmonization and basic characteristics

Author:

Carrilho Thaís Rangel Bousquet,Farias Dayana Rodrigues,Batalha Mônica Araújo,Costa Nathalia Cristina Freitas,Rasmussen Kathleen M.,Reichenheim Michael E.,Ohuma Eric O.,Hutcheon Jennifer A.,Kac Gilberto,Oliveira Adauto Emmerich,Esteves-Pereira Ana Paula,Sato Ana Paula Sayuri,da Silva Antônio Augusto Moura,Costa Bárbara Miranda Ferreira,de Moraes Claudia Leite,Saunders Claudia,Parada Cristina Maria Garcia de Lima,Rocha Daniela da Silva,Gigante Denise Petrucci,dos Santos-Neto Edson Theodoro,Lacerda Elisa Maria de Aquino,Fujimori Elizabeth,Surita Fernanda Garanhani,Gomes-Filho Isaac Suzart,Bierhals Isabel Oliveira,Capelli Jane de Carlos Santana,Cecatti José Guilherme,Vaz Juliana dos Santos,Cesar Juraci Almeida,Mastroeni Marco Fábio,Carvalhaes Maria Antonieta de Barros Leite,da Silveira Mariângela Freitas,Domingues Marlos Rodrigues,Fernandes Mayra Pacheco,Drehmer Michele,Gonzalez Mylena Maciel,Padilha Patrícia de Carvalho,Junior Renato Passini,Souza Renato Teixeira,Alves Ronaldo Fernandes Santos,Batista Rosângela Fernandes Lucena,Mastroeni Silmara Salete de Barros Silva,Saldiva Silvia Regina Dias Medici,da Cruz Simone Seixas,Morais Sirlei Siani,Mengue Sotero Serrate,

Abstract

AbstractPooled data analysis in the field of maternal and child nutrition rarely incorporates data from low- and middle-income countries and existing studies lack a description of the methods used to harmonize the data and to assess heterogeneity. We describe the creation of the Brazilian Maternal and Child Nutrition Consortium dataset, from multiple pooled longitudinal studies, having gestational weight gain (GWG) as an example. Investigators of the eligible studies published from 1990 to 2018 were invited to participate. We conducted consistency analysis, identified outliers, and assessed heterogeneity for GWG. Outliers identification considered the longitudinal nature of the data. Heterogeneity was performed adjusting multilevel models. We identified 68 studies and invited 59 for this initiative. Data from 29 studies were received, 21 were retained for analysis, resulting in a final sample of 17,344 women with 72,616 weight measurements. Fewer than 1% of all weight measurements were flagged as outliers. Women with pre-pregnancy obesity had lower values for GWG throughout pregnancy. GWG, birth length and weight were similar across the studies and remarkably similar to a Brazilian nationwide study. Pooled data analyses can increase the potential of addressing important questions regarding maternal and child health, especially in countries where research investment is limited.

Funder

Brazilian National Research Council and Brazilian Ministry of Health

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3