Liming potential and characteristics of biochar produced from woody and non-woody biomass at different pyrolysis temperatures

Author:

Murtaza Ghulam,Usman Muhammad,Iqbal Javed,Hyder Sajjad,Solangi Farheen,Iqbal Rashid,Okla Mohammad K.,Al-Ghamdi Abdullah Ahmed,Elsalahy Heba H.,Tariq Waseem,Al-Elwany Omar A. A. I.

Abstract

AbstractLarge amount of wastes are burnt or left to decompose on site or at landfills where they cause air pollution and nutrient leaching to groundwater. Waste management strategies that return these food wastes to agricultural soils recover the carbon and nutrients that would otherwise have been lost, enrich soils and improve crop productivity. The incorporation of liming materials can neutralize the protons released, hence reducing soil acidity and its adverse impacts to the soil environment, food security, and human health. Biochar derived from organic residues is becoming a source of carbon input to soil and provides multifunctional values. Biochar can be alkaline in nature, with the level of alkalinity dependent upon the feedstock and processing conditions. This study conducted a characterization of biochar derived from the pyrolysis process of eggplant and Acacia nilotica bark at temperatures of 300 °C and 600 °C. An analysis was conducted on the biochar kinds to determine their pH, phosphorus (P), as well as other elemental composition. The proximate analysis was conducted by the ASTM standard 1762-84, while the surface morphological features were measured using a scanning electron microscope. The biochar derived from Acacia nilotica bark exhibited a greater yield and higher level of fixed carbon while possessing a lower content of ash and volatile components compared to biochar derived from eggplant. The eggplant biochar exhibits a higher liming ability at 600 °C compared to the acacia nilotica bark-derived biochar. The calcium carbonate equivalent, pH, potassium (K), and phosphorus (P) levels in eggplant biochars increased as the pyrolysis temperature increased. The results suggest that biochar derived from eggplant could be a beneficial resource for storing carbon in the soil, as well as for addressing soil acidity and enhancing nutrients availability, particularly potassium and phosphorus in acidic soils.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3