Author:
Tidey Jeremiah P.,Liu En-Pei,Lai Yen-Chung,Chuang Yu-Chun,Chen Wei-Tin,Cane Lauren J.,Lester Chris,Petsch Alexander N. D.,Herlihy Anna,Simonov Arkadiy,Hayden Stephen M.,Senn Mark
Abstract
AbstractDefinitive understanding of superconductivity and its interplay with structural symmetry in the hole-doped lanthanum cuprates remains elusive. The suppression of superconductivity around 1/8th doping maintains particular focus, often attributed to charge-density waves (CDWs) ordering in the low-temperature tetragonal (LTT) phase. Central to many investigations into this interplay is the thesis that La1.875Ba0.125CuO4 and particularly La1.675Eu0.2Sr0.125CuO4 present model systems of purely LTT structure at low temperature. However, combining single-crystal and high-resolution powder X-ray diffraction, we find these to exhibit significant, intrinsic coexistence of LTT and low-temperature orthorhombic domains, typically associated with superconductivity, even at 10 K. Our two-phase models reveal substantially greater tilting of CuO6 octahedra in the LTT phase, markedly buckling the CuO2 planes. This would couple significantly to band narrowing, potentially indicating a picture of electronically driven phase segregation, reminiscent of optimally doped manganites. These results call for reassessment of many experiments seeking to elucidate structural and electronic interplay at 1/8 doping.
Funder
Engineering and Physical Sciences Research Council
Ministry of Science and Technology, Taiwan
Academia Sinica
National Synchrotron Radiation Research Center
Diamond Light Source
Royal Society
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献