DSnet: a new dual-branch network for hippocampus subfield segmentation

Author:

Zhu Hancan,Cheng Wangang,Hu Keli,He Guanghua

Abstract

AbstractThe hippocampus is a critical component of the brain and is associated with many neurological disorders. It can be further subdivided into several subfields, and accurate segmentation of these subfields is of great significance for diagnosis and research. However, the structures of hippocampal subfields are irregular and have complex boundaries, and their voxel values are close to surrounding brain tissues, making the segmentation task highly challenging. Currently, many automatic segmentation tools exist for hippocampal subfield segmentation, but they suffer from high time costs and low segmentation accuracy. In this paper, we propose a new dual-branch segmentation network structure (DSnet) based on deep learning for hippocampal subfield segmentation. While traditional convolutional neural network-based methods are effective in capturing hierarchical structures, they struggle to establish long-term dependencies. The DSnet integrates the Transformer architecture and a hybrid attention mechanism, enhancing the network’s global perceptual capabilities. Moreover, the dual-branch structure of DSnet leverages the segmentation results of the hippocampal region to facilitate the segmentation of its subfields. We validate the efficacy of our algorithm on the public Kulaga-Yoskovitz dataset. Experimental results indicate that our method is more effective in segmenting hippocampal subfields than conventional single-branch network structures. Compared to the classic 3D U-Net, our proposed DSnet improves the average Dice accuracy of hippocampal subfield segmentation by 0.57%.

Funder

Humanities and Social Science Fund of the Ministry of Education of China

Scientific Research Project of Shaoxing University

Zhejiang Provincial Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3