Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model

Author:

Song Eun Mi,Park Beomhee,Ha Chun-Ae,Hwang Sung Wook,Park Sang Hyoung,Yang Dong-Hoon,Ye Byong DukORCID,Myung Seung-Jae,Yang Suk-Kyun,Kim NamkugORCID,Byeon Jeong-Sik

Abstract

AbstractWe aimed to develop a computer-aided diagnostic system (CAD) for predicting colorectal polyp histology using deep-learning technology and to validate its performance. Near-focus narrow-band imaging (NBI) pictures of colorectal polyps were retrieved from the database of our institution. Of these, 12480 image patches of 624 polyps were used as a training set to develop the CAD. The CAD performance was validated with two test datasets of 545 polyps. Polyps were classified into three histological groups: serrated polyp (SP), benign adenoma (BA)/mucosal or superficial submucosal cancer (MSMC), and deep submucosal cancer (DSMC). The overall kappa value measuring the agreement between the true polyp histology and the expected histology by the CAD was 0.614–0.642, which was higher than that of trainees (n = 6, endoscopists with experience of 100 NBI colonoscopies in <6 months; 0.368–0.401) and almost comparable with that of the experts (n = 3, endoscopists with experience of 2,500 NBI colonoscopies in ≥5 years) (0.649–0.735). The areas under the receiver operating curves for CAD were 0.93–0.95, 0.86–0.89, and 0.89–0.91 for SP, BA/MSMC, and DSMC, respectively. The overall diagnostic accuracy of the CAD was 81.3–82.4%, which was significantly higher than that of the trainees (63.8–71.8%, P < 0.01) and comparable with that of experts (82.4–87.3%). The kappa value and diagnostic accuracies of the trainees improved with CAD assistance: that is, the kappa value increased from 0.368 to 0.655, and the overall diagnostic accuracy increased from 63.8–71.8% to 82.7–84.2%. CAD using a deep-learning model can accurately assess polyp histology and may facilitate the diagnosis of colorectal polyps by endoscopists.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3