Nanoparticles synthesis in microwave plasmas: peculiarities and comprehensive insight

Author:

Ouaras KarimORCID,Lombardi Guillaume,Hassouni Khaled

Abstract

AbstractLow-pressure plasma processes are routinely used to grow, functionalize or etch materials, and thanks to some of its unique attributes, plasma has become a major player for some applications such as microelectronics. Plasma processes are however still at a research level when it comes to the synthesis and functionalization of nanoparticles. Yet plasma processes can offer a particularly suitable solution to produce nanoparticles having very peculiar features since they enable to: (i) reach particle with a variety of chemical compositions, (ii) tune the size and density of the particle cloud by acting on the transport dynamics of neutral or charged particles through a convenient setting of the thermal gradients or the electric field topology in the reactor chamber and (iii) manipulate nanoparticles and deposit them directly onto a substrate, or codeposit them along with a continuous film to produce nanocomposites or (iv) use them as a template to produce 1D materials. In this article, we present an experimental investigation of nanoparticles synthesis and dynamics in low-pressure microwave plasmas by combining time-resolved and in-situ laser extinction and scattering diagnostics, QCL absorption spectroscopy, mass spectrometry, optical emission spectroscopy and SEM along with a particle transport model. We showed for the first time the thermophoresis-driven dynamic of particle cloud in electrodless microwave plasmas. We showed that this effect is linked to particular fluctuations in the plasma composition and results in the formation of a void region in the bulk of the plasma surrounded by a particle cloud in the peripherical post-discharge. We also reveals and analyze the kinetics of precursor dissociation and molecular growth that result in the observed nanoparticle nucleation.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3