Thermal reaction norms of key metabolic enzymes reflect divergent physiological and behavioral adaptations of closely related amphipod species
-
Published:2021-02-25
Issue:1
Volume:11
Page:
-
ISSN:2045-2322
-
Container-title:Scientific Reports
-
language:en
-
Short-container-title:Sci Rep
Author:
Jakob Lena,Vereshchagina Kseniya P.,Tillmann Anette,Rivarola-Duarte Lorena,Axenov-Gribanov Denis V.,Bedulina Daria S.,Gurkov Anton N.,Drozdova Polina,Timofeyev Maxim A.,Stadler Peter F.,Luckenbach Till,Pörtner Hans-Otto,Sartoris Franz J.,Lucassen Magnus
Abstract
AbstractLake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large-scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely-related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6–23.6 °C; 0.8 °C d−1). In concert with routine metabolic rates, activities of key metabolic enzymes increased strongly with temperature up to 15 °C in E. verrucosus, whereupon they leveled off (except for lactate dehydrogenase). In contrast, exponential increases were seen in E. cyaneus and G. lacustris throughout the thermal trial (Q10-values: 1.6–3.7). Cytochrome-c-oxidase, lactate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase activities were found to be higher in G. lacustris than in E. cyaneus, especially at the highest experimental temperature (23.6 °C). Decreasing gene expression levels revealed some thermal compensation in E. cyaneus but not in G. lacustris. In all species, shifts in enzyme activities favored glycolytic energy generation in the warmth. The congruent temperature-dependencies of enzyme activities and routine metabolism in E. verrucosus indicate a strong feedback-regulation of enzymatic activities by whole organism responses. The species-specific thermal reaction norms reflect the different ecological niches, including the spatial distribution, distinct thermal behavior such as temperature-dependent migration, movement activity, and mating season.
Funder
Helmholtz-Gemeinschaft Russian Science Foundation Russian Foundation for Basic Research Ministry of Science and Higher Education of the Russian Federation
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference61 articles.
1. Rusinek, O. T., Takhteev, V. V., Gladkochub, D. P., Khodzher, T. V. & Budnev, N. M. Baikalovedenie (Baikalogy). (Nauka, 2012). 2. Martin, P., Goddeeris, B. & Martens, K. Oxygen concentration profiles in soft sediment of Lake Baikal (Russia) near the Selenga delta. Freshw. Biol. 29, 343–349 (1993). 3. Khodzher, T. V., Domysheva, V. M., Sorokovikova, L. M., Sakirko, M. V. & Tomberg, I. V. Current chemical composition of Lake Baikal water. Inland Waters 7, 250–258 (2017). 4. Verkhozina, V. A., Kozhova, O. M. & Kusner, Yu. S. Hydrodynamics as a limiting factor in the Lake Baikal ecosystem. Aquat. Ecosyst. Health Manag. 3, 203–210 (2000). 5. Timoshkin, O. A., Medvezhonkova, O. V., Troitskaya, E. S., Tyutrin, A. & Yamamuro, M. Water temperature dynamics in the coastal zone of Lake Baikal (western side of the southern basin). http://lin.irk.ru/temperature/web/index.php?r=site%2Fgraph&lang=en (2009).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|