Abstract
AbstractIt is critical to understand how human modifications of Earth’s ecosystems are influencing ecosystem functioning, including net and gross community production (NCP and GCP, respectively) and community respiration (CR). These responses are often estimated by measuring oxygen production in the light (NCP) and consumption in the dark (CR), which can then be combined to estimate GCP. However, the method used to create “dark” conditions—either experimental darkening during the day or taking measurements at night—could result in different estimates of respiration and production, potentially affecting our ability to make integrative predictions. We tested this possibility by measuring oxygen concentrations under daytime ambient light conditions, in darkened tide pools during the day, and during nighttime low tides. We made measurements every 1–3 months over one year in southeastern Alaska. Daytime respiration rates were substantially higher than those measured at night, associated with higher temperature and oxygen levels during the day and leading to major differences in estimates of GCP calculated using daytime versus nighttime measurements. Our results highlight the potential importance of measuring respiration rates during both day and night to account for effects of temperature and oxygen—especially in shallow-water, constrained systems—with implications for understanding the impacts of global change on ecosystem metabolism.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
2. IPCC. AR5 Climate Change 2013: The Physical Science Basis (Intergovernmental Panel on Climate Change, 2013).
3. IPCC. AR5 Synthesis Report: Climate Change 2014 (Intergovernmental Panel on Climate Change, 2014).
4. Caldeira, K. & Wickett, M. E. Antropogenic carbon and ocean pH: The coming centuries may see more ocean acidification than the past 300 million years. Nature 425, 365 (2003).
5. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献