A new approach to three-dimensional microstructure reconstruction of a polycrystalline solar cell using high-efficiency Cu(In,Ga)Se2

Author:

Song Chang-Yun,Maiberg Matthias,Kempa Heiko,Witte Wolfram,Hariskos Dimitrios,Abou-Ras Daniel,Moeller Birgit,Scheer Roland,Gholinia Ali

Abstract

AbstractA new method for efficiently converting electron backscatter diffraction data obtained using serial sectioning by focused ion beam of a polycrystalline thin film into a computational, three-dimensional (3D) structure is presented. The reported data processing method results in a more accurate representation of the grain surfaces, reduced computer memory usage, and improved processing speed compared to traditional voxel methods. The grain structure of a polycrystalline absorption layer from a high-efficiency Cu(In,Ga)Se2 solar cell (19.5%) is reconstructed in 3D and the grain size and surface distribution is investigated. The grain size distribution is found to be best fitted by a log-normal distribution. We further find that the grain size is determined by the [Ga]/([Ga] + [In]) ratio in vertical direction, which was measured by glow discharge optical emission spectroscopy. Finally, the 3D model derived from the structural information is applied in optoelectronic simulations, revealing insights into the effects of grain boundary recombination on the open-circuit voltage of the solar cell. An accurate 3D structure like the one obtained with our method is a prerequisite for a detailed understanding of mechanical properties and for advanced optical and electronic simulations of polycrystalline thin films.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Martin-Luther-Universität Halle-Wittenberg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3