Monitoring warning criterion of acoustic emission active waveguide system based on loess deformation and failure

Author:

Zhang Ke,Wang Liang,Meng Guoqiang

Abstract

AbstractThe construction of acoustic emission criterion system is crucial for monitoring and providing early warning of geological hazards. In the current soil acoustic emission monitoring methods, the signal generated by soil deformation and failure is weak and experiences high attenuation, resulting in a low level of the monitored signal. One approach to enhance the quality of monitoring data is by utilizing the active waveguide model. However, the current research on the active waveguide model system is not extensive. To address these issues, a set of active waveguide system was designed to improve the data quality of acoustic emission monitoring and early warning. The deformation and failure process of loess monitored by acoustic emission was divided into stages, and the precursor information of acoustic emission for geological disasters in loess areas was comprehensively deconstructed. The data quality advantage of the active waveguide model was verified through comparative experiments of with the passive waveguide model. This study investigates the AE signal characteristics of the active waveguide model. It explores various aspects such as the AE waveform parameter characteristics, the discrimination method for failure mode based on RA–AF value, the AE r-value characteristics, the AE b-value characteristics, and the frequency-amplitude characteristics. The study reveals the evolution law of AE signals in the active waveguide model, including early warning signs and failure morphological characteristics. Furthermore, it constructs a warning criterion for the active waveguide system. The development of this criterion system is of great importance in guiding the monitoring and early warning of geological disasters in loess areas.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3