Devising a deep neural network based mammography phantom image filtering algorithm using images obtained under mAs and kVp control

Author:

Park Sung Soo,Ku Young Mi,Seo Kyung Jin,Whang In Yong,Hwang Yun Sup,Kim Min Ji,Jung Na Young

Abstract

AbstractWe study whether deep neural network based algorithm can filter out mammography phantom images that will pass or fail. With 543 phantom images generated from a mammography unit, we created VGG16 based phantom shape scoring models (multi-and binary-class classifiers). Using these models we designed filtering algorithms that can filter failed or passed phantom images. 61 phantom images obtained from two different medical institutions were used for external validation. The performances of the scoring models show an F1-score of 0.69 (95% confidence interval (CI) 0.65, 0.72) for multi-class classifiers and an F1-score of 0.93 (95% CI 0.92, 0.95) and area under the receiver operating characteristic curve of 0.97 (95% CI 0.96, 0.98) for binary-class classifiers. A total of 42 of the 61 phantom images (69%) were filtered by the filtering algorithms without further need for assessment from a human observer. This study demonstrated the potential to reduce the human workload from mammographic phantom interpretation using the deep neural network based algorithm.

Funder

2018 year research fund of department of Radilogy, Catholic Univ.of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3