Graphlets in comparison of Petri net-based models of biological systems

Author:

Szawulak Bartłomiej,Formanowicz Piotr

Abstract

AbstractCapability to compare biological models is a crucial step needed in an analysis of complex organisms. Petri nets as a popular modelling technique, needs a possibility to determine the degree of structural similarities (e.g., comparison of metabolic or signaling pathways). However, existing comparison methods use matching invariants approach for establishing a degree of similarity, and because of that are vulnerable to the state explosion problem which may appear during calculation of a minimal invariants set. Its occurrence will block usage of existing methods. To find an alternative for this situation, we decided to adapt and tests in a Petri net environment a method based on finding a distribution of graphlets. First, we focused on adapting the original graphlets for notation of bipartite, directed graphs. As a result, 151 new graphlets with 592 orbits were created. The next step focused on evaluating a performance of the popular Graphlet Degree Distribution Agreement (GDDA) metric in the new environment. To do that, we decided to use randomly generated networks that share typical characteristics of biological models represented in Petri nets. Our results confirmed the usefulness of graphlets and GDDA in Petri net comparison and discovered its limitations.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3