Design, construction and field testing of a manually feeding semiautomatic sugarcane dud chipper

Author:

Elwakeel Abdallah Elshawadfy,Mohamed Saher M. A.,Tantawy Abubakr Abdelwahab,Okasha Abdelaziz M.,Elsayed Salah,Elsherbiny Osama,Farooque Aitazaz A.,Yaseen Zaher Mundher

Abstract

AbstractSugarcane is the main sugar crop, and sugar is an important agricultural product in Egypt. There are many problems with the technology used in the current planting method of sugarcane, which has a great impact on the planting quality of sugarcane, which have a series of problems, such as low cutting efficiency and poor quality. Therefore, the aim of the current study was to design, construct, and field testing of a semiautomatic sugarcane bud chipper assisted with pivot knives for cutting sugarcane buds and germinating them in plastic trays inside a greenhouse until they reached an average length of 35 cm, and then planting them in the field. In the field tests five cutting speeds (35, 40, 45, 50, and 56 rpm. (Revolution Per minute), three cutting knives (1.5, 2.0, and 2.5 mm) were used for cutting sugarcane stalks with four different diameters (1.32, 1.82, 2.43, and 2.68 cm). The obtained results showed that the values of the damage index and invisible losses were within acceptable limits (ranging between − 1.0 and 0.0) for all the variables under the test. Still, the lowest damage index and invisible losses were recorded with the buds that were cut with a knife of 1.5 mm thickness and cutting speeds less than 50 rpm. The skipping rate increases with the increase in cutting speed and stalk diameter, ranging between 0.0 to 13%. The maximum machine productivity was 110 Buds per minute at a cutting speed of 35 rpm and stalk diameter of 1.32 cm. The paper's findings have important application values for promoting the designing and development of sugarcane bud chipper and sugarcane planting technology in the future.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3