A novel principle to localize the sensitivity of waveform tomography using wave interferences at the observation boundary

Author:

Minato Shohei,Ghose Ranajit

Abstract

AbstractWhen using waveform tomography to perform high-resolution imaging of a medium, it is vital to calculate the sensitivity in order to describe how well a model fits a given set of data and how the sensitivity changes with the spatial distribution of the heterogeneities. The traditional principle behind calculating the sensitivity—for detecting small changes—suffers from an inherent limitation in case other structures, not of interest, are present along the wave propagation path. We propose a novel principle that leads to enhanced localization of the sensitivity of the waveform tomography, without having to know the intermediate structures. This new principle emerges from a boundary integral representation which utilizes wave interferences observed at multiple points. When tested on geophysical acoustic wave data, this new principle leads to much better sensitivity localization and detection of small changes in seismic velocities, which were otherwise impossible. Overcoming the insensitivity to a target area, it offers new possibilities for imaging and monitoring small changes in properties, which is critical in a wide range of disciplines and scales.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3