Author:
Lam Barbara D.,Dodge Laura E.,Zerbey Sabrina,Robertson William,Rosovsky Rachel P.,Lake Leslie,Datta Siddhant,Elavakanar Pavania,Adamski Alys,Reyes Nimia,Abe Karon,Vlachos Ioannis S.,Zwicker Jeffrey I.,Patell Rushad
Abstract
AbstractVenous thromboembolism (VTE) is the leading cause of preventable death in hospitalized patients. Artificial intelligence (AI) and machine learning (ML) can support guidelines recommending an individualized approach to risk assessment and prophylaxis. We conducted electronic surveys asking clinician and healthcare informaticians about their perspectives on AI/ML for VTE prevention and management. Of 101 respondents to the informatician survey, most were 40 years or older, male, clinicians and data scientists, and had performed research on AI/ML. Of the 607 US-based respondents to the clinician survey, most were 40 years or younger, female, physicians, and had never used AI to inform clinical practice. Most informaticians agreed that AI/ML can be used to manage VTE (56.0%). Over one-third were concerned that clinicians would not use the technology (38.9%), but the majority of clinicians believed that AI/ML probably or definitely can help with VTE prevention (70.1%). The most common concern in both groups was a perceived lack of transparency (informaticians 54.4%; clinicians 25.4%). These two surveys revealed that key stakeholders are interested in AI/ML for VTE prevention and management, and identified potential barriers to address prior to implementation.
Funder
Centers for Disease Control and Prevention Foundation
Publisher
Springer Science and Business Media LLC