Tailoring the resonant modes in liquid crystal based all-dielectric metasurfaces

Author:

Sakhare Pratiksha A.,Atmakuri Madhunika,Dontabhaktuni Jayasri

Abstract

AbstractHigh refractive index dielectic metasurfaces are being increasingly studied for their novel light-matter interactions such as Huygen’s lens, absolute transmission and complete absorption. Liquid crystal is a versatile medium with high dielectric anisotropy and hence interaction of light with the dielectric metasurfaces immersed in liquid crystal medium show complex behaviour compared to isotropic media. Most of the investigations on liquid crystal based electromagnetic response of dielectric metasurfaces focus on tunability of resonant frequencies and switching between the resonant states as a function of external stimuli such as electric field, temperature, etc. In the current work we present a detailed numerical investigation based on studies of scattering response, near-field and far-field radiation profiles of cubic Tellurium metasurfaces as a function of liquid crystal orientations in infrared frequencies. We show that the near-field and far-field radiation profiles of primary resonant modes—electric dipoles and magnetic dipoles reorient as a function of liquid crystal orientations. In particular, we study the effect of liquid crystal orientations on novel non-radiative states called anapoles. It is observed that liquid crystal orientations effect the excitation and orientation of anapole states within the Tellurium structures. This paves way for design of an electrically-driven switch between non-radiative and radiative states. Further, controlling the near-field and far-field radiation profiles opens up possibilities in designing liquid crystal based tunable multi-functional metasurfaces which can change the directionality of incident light.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3