Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps

Author:

Fontana Veronika,Guariento Elia,Hilpold Andreas,Niedrist Georg,Steinwandter Michael,Spitale Daniel,Nascimbene Juri,Tappeiner Ulrike,Seeber Julia

Abstract

AbstractTo understand how diversity is distributed in space is a fundamental aim for optimizing future species and community conservation. We examined in parallel species richness and beta diversity components of nine taxonomic groups along a finite space, represented by pastured grasslands along an elevational gradient. Beta diversity, which is assumed to bridge local alpha diversity to regional gamma diversity was partitioned into the two components turnover and nestedness and analyzed at two levels: from the lowest elevation to all other elevations, and between neighboring elevations. Species richness of vascular plants, butterflies, beetles, spiders and earthworms showed a hump-shaped relationship with increasing elevation, while it decreased linearly for grasshoppers and ants, but increased for lichens and bryophytes. For most of the groups, turnover increased with increasing elevational distance along the gradient while nestedness decreased. With regard to step-wise beta diversity, rates of turnover or nestedness did not change notably between neighboring steps for the majority of groups. Our results support the assumption that species communities occupying the same habitat significantly change along elevation, however transition seems to happen continuously and is not detectable between neighboring steps. Our findings, rather than delineating levels of major diversity losses, indicate that conservation actions targeting at a preventive protection for species and their environment in mountainous regions require the consideration of entire spatial settings.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3