Conversion of Broad-Spectrum Antimicrobial Peptides into Species-Specific Antimicrobials Capable of Precisely Targeting Pathogenic Bacteria

Author:

Xu Lin,Shao Changxuan,Li Guoyu,Shan Anshan,Chou Shuli,Wang Jiajun,Ma Qingquan,Dong Na

Abstract

AbstractCurrently, the majority of antibiotics in clinical use have broad activity spectra, killing pathogenic and beneficial microorganisms indiscriminately. The disruption of the ecological balance of normal flora often results in secondary infections or other antibiotic-associated complications. Therefore, targeted antimicrobial therapies capable of specifically eliminating pathogenic bacteria while retaining the protective benefits of a normal microflora would be advantageous. In this study, we successfully constructed a series of Enterococcus faecalis-targeted antimicrobial peptides from wide-spectrum antimicrobial peptide precursors. These peptides are designed based on fusion of the species-specific peptide pheromone cCF10 and modification of the active region of the antimicrobial peptide. The results showed that cCF10-C4 possessed specific antimicrobial activity against E. faecalis and was not active against other types of bacteria tested. The specificity of this hybrid peptide was shown by the absence of antimicrobial effects in the pheromone-substituted derivative. Further studies indicated that cCF10-C4 and its parent peptide C4 exert their activities by damaging cytoplasmic membrane integrity. The present study reveals the application potential of these molecules as “probiotic” antimicrobials for the control of specific bacterial infections, and it also helps to elucidate the design and construction of species-specific antimicrobials with precise targeting specificity.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3