Exploring the best monochromatic energy level in dual energy spectral imaging for coronary stents after percutaneous coronary intervention

Author:

Liu Qian,Wang Yajuan,Qi Haicheng,Yu Yaohui,Xing Yan

Abstract

AbstractIn this study, the optimal monochromatic energy level in dual-energy spectral CT required for imaging coronary stents after percutaneous coronary intervention (PCI) was explored. Thirty-five consecutive patients after PCI were examined using the dual-energy spectral CT imaging mode. The original images were reconstructed at 40–140 keV (10-keV interval) monochromatic levels. The in-stent and out-stent CT values at each monochromatic level were measured to calculate the signal-to-noise ratio(SNR) and contrast-to-noise ratio (CNR) for the vessel and the CT value difference between the in-stent and out-stent lumen (dCT (in–out)), which reflects the artificial CT number increase due to the beam hardening effect caused by the stents. The subjective image quality of the stent and in-stent vessel was evaluated by two radiologists using a 5-point scale. With the increase in energy level, the CT value, SNR, CNR, and dCT (in–out) all decreased. At 80 keV, the mean CT value in-stent reached (345.24 ± 93.43) HU and dCT (in–out) started plateauing. In addition, the subjective image quality of the stents and vessels peaked at 80 keV. The 80 keV monochromatic images are optimal for imaging cardiac patients with stents after PCI, balancing the enhancement and SNR and CNR in the vessels while minimizing the beam hardening artifacts caused by the stents.

Funder

Xinjiang Uygur Autonomous Region Graduate Student Scientific Research Innovation Project Funding

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3