Author:
Haider Madiha,Dholakia Dhwani,Panwar Aleksha,Garg Parth,Gheware Atish,Singh Dayanidhi,Singhal Khushboo,Burse Shaunak A.,Kumari Surekha,Sharma Anmol,Ray Arjun,Medigeshi Guruprasad R.,Sharma Upendra,Prasher Bhavana,Mukerji Mitali
Abstract
AbstractBioactive fractions obtained from medicinal plants which have been used for the treatment of multiple diseases could exert their effects by targeting common pathways. Prior knowledge of their usage could allow us to identify novel molecular links. In this study, we explored the molecular basis of action of one such herbal formulation Cissampelos pareira L. (Cipa), used for the treatment of female hormone disorders and fever. Transcriptomic studies on MCF7 cell lines treated with Cipa extract carried out using Affymetrix arrays revealed a downregulation of signatures of estrogen response potentially modulated through estrogen receptor α (ERα). Molecular docking analysis identified 38 Cipa constituents that potentially bind (ΔG < − 7.5) with ERα at the same site as estrogen. The expression signatures in the connectivity map (https://clue.io/;) revealed high positive scores with translation inhibitors such as emetine (score: 99.61) and knockdown signatures of genes linked to the antiviral response such as ribosomal protein RPL7 (score: 99.92), which is a reported ERα coactivator. Further, gene knockdown experiments revealed that Cipa exhibits antiviral activity in dengue infected MCF7 cells potentially modulated through estrogen receptor 1. This approach reveals a novel pathway involving the ESR1-RPL7 axis which could be a potential target in dengue viral infection.
Funder
Council of Scientific and Industrial Research, India
Ministry of Ayurveda, Yoga and Naturopathy, Unani, Siddha and Homoeopathy
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献