Multiplex CRISPR/Cas9-mediated knockout of the phytoene desaturase gene in Coffea canephora

Author:

Casarin Tatiane,Freitas Natália Chagas,Pinto Renan Terassi,Breitler Jean‑Christophe,Rodrigues Leonardo Augusto Zebral,Marraccini Pierre,Etienne Hervé,Diniz Leandro Eugenio Cardamone,Andrade Alan Carvalho,Paiva Luciano Vilela

Abstract

AbstractCoffea canephora (2n = 2x = 22 chromosomes) is a species with extensive genetic diversity and desirable agronomic traits for coffee breeding programs. However, obtaining a new coffee cultivar through conventional breeding techniques may require more than 30 years of crossing cycles and selection, which hampers the effort of keeping up with market demands and rapidly proposing more resilient to climate change varieties. Although, the application of modern biotechnology tools such as precision genetic engineering technologies may enable a faster cultivar development process. Therefore, we aimed to validate the CRISPR/Cas9 system to generate mutations on a selected genotype of C. canephora, the clone 14. Embryogenic calli and a multiplex binary vector containing two sgRNAs targeting different exons of the CcPDS gene were used. The sgRNAs were under the C. canephora U6 promoter regulation. The target gene encodes phytoene desaturase, an enzyme essential for photosynthesis involved in β-carotene biosynthesis. Somatic seedlings and embryos with albino, variegated and green phenotypes regenerated after Agrobacterium tumefaciens-mediated genetic transformation were analyzed by verifying the insertion of the Cas9 gene and later by sequencing the sgRNAs target regions in the genome of Robusta modified seedlings. Among them, 77% had the expected mutations, and of which, 50% of them had at least one target with a homozygous mutation. The genotype, temperature of co-cultivation with the bacteria, and light intensity used for subsequent embryo regeneration appeared to strongly influence the successful regeneration of plants with a mutated CcPDS gene in the Coffea genus.

Funder

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3