Adaptive reinforcement learning for task scheduling in aircraft maintenance

Author:

Silva Catarina,Andrade Pedro,Ribeiro Bernardete,F. Santos Bruno

Abstract

AbstractThis paper proposes using reinforcement learning (RL) to schedule maintenance tasks, which can significantly reduce direct operating costs for airlines. The approach consists of a static algorithm for long-term scheduling and an adaptive algorithm for rescheduling based on new maintenance information. To assess the performance of both approaches, three key performance indicators (KPIs) are defined: Ground Time, representing the hours an aircraft spends on the ground; Time Slack, measuring the proximity of tasks to their due dates; and Change Score, quantifying the similarity level between initial and adapted maintenance plans when new information surfaces. The results demonstrate the efficacy of RL in producing efficient maintenance plans, with the algorithms complementing each other to form a solid foundation for routine tasks and real-time responsiveness to new information. While the static algorithm performs slightly better in terms of Ground Time and Time Slack, the adaptive algorithm excels overwhelmingly in terms of Change Score, offering greater flexibility in handling new maintenance information. The proposed RL-based approach can improve the efficiency of aircraft maintenance and has the potential for further research in this area.

Funder

European Union H2020

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3