Climate driven spatiotemporal variations in seabird bycatch hotspots and implications for seabird bycatch mitigation

Author:

Bi Rujia,Jiao Yan,Browder Joan A.

Abstract

AbstractBycatch in fisheries is a major threat to many seabird species. Understanding and predicting spatiotemporal changes in seabird bycatch from fisheries might be the key to mitigation. Inter-annual spatiotemporal patterns are evident in seabird bycatch of the U.S. Atlantic pelagic longline fishery monitored by the National Marine Fisheries Service Pelagic Observer Program (POP) since 1992. A newly developed fast computing Bayesian approximation method provided the opportunity to use POP data to understand spatiotemporal patterns, including temporal changes in location of seabird bycatch hotspots. A Bayesian model was developed to capture the inherent spatiotemporal structure in seabird bycatch and reduce the bias caused by physical barriers such as coastlines. The model was applied to the logbook data to estimate seabird bycatch for each longline set, and the mid-Atlantic bight and northeast coast were the fishing areas with the highest fleet bycatch estimate. Inter-annual changes in predicted bycatch hotspots were correlated with Gulf Stream meanders, suggesting that predictable patterns in Gulf Stream meanders could enable advanced planning of fishing fleet schedules and areas of operation. The greater the Gulf Stream North Wall index, the more northerly the seabird bycatch hotspot two years later. A simulation study suggested that switching fishing fleets from the hindcasted actual bycatch hotspot to neighboring areas and/or different periods could be an efficient strategy to decrease seabird bycatch while largely maintaining fishers’ benefit.

Funder

National Marine Fisheries Service, National Oceanic and Atmospheric Administration

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference66 articles.

1. BirdLife International. State of the World’s Birds: Taking the Pulse of the Planet (BirdLife International, 2018).

2. Dias, M. P. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537 (2019).

3. Gales, R. in Albatross Biology and Conservation (eds Robertson, G. & Gales, R.) 20–45 (Surrey Beatty and Sons, Chipping Norton, 1998).

4. Gales, R., Brothers, N. & Reid, T. Seabird mortality in the Japanese tuna longline fishery around Australia, 1988–1995. Biol. Conserv. 86, 37–56 (1998).

5. Anderson, O. R. et al. Global seabird bycatch in longline fisheries. Endanger. Species Res. 14, 91–106 (2011).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3