Author:
Fu Jinqiu,Si Libo,Zhou Yao,Li Dong,Wang Ran
Abstract
AbstractPost-transcriptional methylation modifications, such as the N7-methylguanosine (m7G) modification, are increasingly acknowledged for their role in the development and resistance to chemotherapy in acute myeloid leukemia (AML). This study employed MeRIP-seq technology to investigate the m7G sites within circular RNAs (circRNAs) derived from human AML cells and drug-resistant AML cells, in order to identify these sites more comprehensively. In addition, a detailed analysis of the relationship between m7G and drug-resistant AML was conducted. The bioinformatics analysis was utilized to predict the functions of specific methylated transcripts. The findings revealed a significant difference in m7G level between AML cells and drug-resistant AML cells, suggesting a potentially critical role of m7G in circRNAs in drug-resistant AML development. The methylation of M7G could affect the circRNA-miRNA-mRNA co-expression during the development of AML resistance, which could further influence the regulation of resistance-associated target genes in AML. Furthermore, gene ontology analysis indicated that the distinct distribution pattern of circRNAs with m7G methylation in drug-resistant AML cells was correlated with metabolism-related pathways. These results suggested a potential association between drug-resistant AML and m7G methylation of circRNAs. Moreover, the results revealed a novel role of m7G RNA methylation in circRNAs in the progression of AML chemoresistance.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献