Using machine learning tools to predict outcomes for emergency department intensive care unit patients

Author:

Zhai Qiangrong,Lin Zi,Ge Hongxia,Liang Yang,Li Nan,Ma Qingbian,Ye Chuyang

Abstract

AbstractThe number of critically ill patients has increased globally along with the rise in emergency visits. Mortality prediction for critical patients is vital for emergency care, which affects the distribution of emergency resources. Traditional scoring systems are designed for all emergency patients using a classic mathematical method, but risk factors in critically ill patients have complex interactions, so traditional scoring cannot as readily apply to them. As an accurate model for predicting the mortality of emergency department critically ill patients is lacking, this study’s objective was to develop a scoring system using machine learning optimized for the unique case of critical patients in emergency departments. We conducted a retrospective cohort study in a tertiary medical center in Beijing, China. Patients over 16 years old were included if they were alive when they entered the emergency department intensive care unit system from February 2015 and December 2015. Mortality up to 7 days after admission into the emergency department was considered as the primary outcome, and 1624 cases were included to derive the models. Prospective factors included previous diseases, physiologic parameters, and laboratory results. Several machine learning tools were built for 7-day mortality using these factors, for which their predictive accuracy (sensitivity and specificity) was evaluated by area under the curve (AUC). The AUCs were 0.794, 0.840, 0.849 and 0.822 respectively, for the SVM, GBDT, XGBoost and logistic regression model. In comparison with the SAPS 3 model (AUC = 0.826), the discriminatory capability of the newer machine learning methods, XGBoost in particular, is demonstrated to be more reliable for predicting outcomes for emergency department intensive care unit patients.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3