Low-cost photocatalytic membrane modified with green heterojunction TiO2/ZnO nanoparticles prepared from waste

Author:

Mousa Sahar A.,Abdallah Heba,Khairy S. A.

Abstract

AbstractThe combination of photocatalysis and membrane procedures represents a promising approach for water treatment. This study utilized green synthesis methods to produce TiO2 nanoparticles (NPs) using Pomegranate extract and ZnO nanoparticles using Tangerine extract. These nanoparticles were then incorporated into a polyvinyl chloride (PVC) nanocomposite photocatalytic membrane. Different devices were used to examine the properties of nanocomposite membranes. The prepared membranes' morphology was examined using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The hydrophilicity of the membrane surface was assessed through the measurement of contact angle, while the crystal structure and chemical bonding were analyzed using Raman and Fourier transform infrared spectroscopy (FT-IR). The study also encompassed an examination of the mechanical properties. The hydrophilicity of the modified membrane exhibited a significant improvement. Additionally, there was an observed increase in both the pure water flux and rejection values. The photocatalytic activity of the membrane was found to be enhanced when exposed to sunlight as compared to when kept in the dark. The TiO2/ZnO nanocomposites membrane exhibited the highest level of photocatalytic degradation, achieving a rejection rate of 98.7% compared to the unmodified membrane. Therefore, it was determined that the TiO2/ZnO nanocomposites membrane exhibited superior performance to the other membranes assessed. The potential utility of our research lies in its application within the water treatment industry, specifically as an effective technique for modifying PVC membranes.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3