Comprehensive investigation of isotherm, RSM, and ANN modeling of CO2 capture by multi-walled carbon nanotube

Author:

Khoshraftar Zohreh,Ghaemi Ahad,Hemmati Alireza

Abstract

AbstractChemical vapor deposition was used to produce multi-walled carbon nanotubes (MWCNTs), which were modified by Fe–Ni/AC catalysts to enhance CO2 adsorption. In this study, a new realm of possibilities and potential advancements in CO2 capture technology is unveiled through the unique combination of cutting-edge modeling techniques and utilization of the recently synthesized Fe–Ni/AC catalyst adsorbent. SEM, BET, and FTIR were used to analyze their structure and morphology. The surface area of MWCNT was found to be 240 m2/g, but after modification, it was reduced to 11 m2/g. The modified MWCNT showed increased adsorption capacity with higher pressure and lower temperature, due to the introduction of new adsorption sites and favorable interactions at lower temperatures. At 25 °C and 10 bar, it reached a maximum adsorption capacity of 424.08 mg/g. The optimal values of the pressure, time, and temperature parameters were achieved at 7 bar, 2646 S and 313 K. The Freundlich and Hill models had the highest correlation with the experimental data. The Second-Order and Fractional Order kinetic models fit the adsorption results well. The adsorption process was found to be exothermic and spontaneous. The modified MWCNT has the potential for efficient gas adsorption in fields like gas storage or separation. The regenerated M-MWCNT adsorbent demonstrated the ability to be reused multiple times for the CO2 adsorption process, as evidenced by the study. In this study, a feed-forward MLP artificial neural network model was created using a back-propagation training approach to predict CO2 adsorption. The most suitable and efficient MLP network structure, selected for optimization, consisted of two hidden layers with 25 and 10 neurons, respectively. This network was trained using the Levenberg–Marquardt backpropagation algorithm. An MLP artificial neural network model was created, with a minimum MSE performance of 0.0004247 and an R2 value of 0.99904, indicating its accuracy. The experiment also utilized the blank spreadsheet design within the framework of response surface methodology to predict CO2 adsorption. The proximity between the Predicted R2 value of 0.8899 and the Adjusted R2 value of 0.9016, with a difference of less than 0.2, indicates a high level of similarity. This suggests that the model is exceptionally reliable in its ability to predict future observations, highlighting its robustness.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3