Discovery of novel potential selective HDAC8 inhibitors by combine ligand-based, structure-based virtual screening and in-vitro biological evaluation

Author:

Debnath Sudhan,Debnath Tanusree,Bhaumik Samhita,Majumdar Swapan,Kalle Arunasree M.ORCID,Aparna Vema

Abstract

AbstractNeuroblastoma is the most common extracranial solid tumor found in children and survival rate is extremely meager. HDAC8, a class I zinc-dependent enzyme, is a potential drug target for treatment of neuroblastoma and T cell lymphoma. Most of the HDAC8 inhibitors discovered till date contains a hydroxamic acid group which acts as a zinc binding group. The high binding affinity to the zinc and other ions results in adverse effects. Also, the non-selective inhibition of HDACs cause a variety of side effects. The objective of this is to identify structurally diverse, non-hydroxamate, novel, potential and selective HDAC8 inhibitors. A number of five featured pharmacophore hypotheses were generated using 32 known selective HDAC8 inhibitors. The hypotheses ADDRR.4 were selected for building 3D QSAR model. This model has an excellent correlation coefficient and good predictive ability, which was employed for virtual screening of Phase database containing 4.3 × 106 molecules. The resultant hits with fitness score >1.0 were optimized using in-silico ADMET (absorption, distribution, metabolism,  excretion, and toxicity) and XP glide docking studies. On the basis of pharmacophore matching, interacting amino acid residues, XP glide score, more affinity towards HDAC8 and less affinity towards other HDACs, and ADME results five hits- SD-01, SD-02, SD-03, SD-04 and SD-05 with new structural scaffolds,  non-hydroxamate were selected for in vitro activity study. SD-01 and SD-02 were found to be active in the nanomolar (nM) range. SD-01 had considerably good selectivity for HDAC8 over HDAC6 and SD-02 had marginal selectivity for HDAC6 over HDAC8. The compounds SD-01 and SD-02 were found to inhibit HDAC8 at concentrations (IC50) 9.0 nM and 2.7 nM, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3