Unusual microwave heating of water in reverse micellar solution

Author:

Murakami Hiroshi

Abstract

AbstractMicrowaves (MWs) are widely used for heating food, accelerating chemical reactions, drying materials, therapies, and so on. Water molecules absorb MWs and produce heat because of their substantial electric dipole moments. Recently, increasing attention has been paid to accelerating various catalytic reactions in water-containing porous materials using MW irradiation. Here, a critical question is whether water in nanoscale pores generates heat in the same way as liquid water. Is it valid that MW-heating behaviors of nanoconfined water are estimated solely by a dielectric constant of liquid water? There are almost no studies regarding this question. Here, we address it using reverse micellar (RM) solutions. Reverse micelles are water-containing nanoscale cages formed by self-assembled surfactant molecules in oil. We measured real-time temperature changes of liquid samples within a waveguide under MW irradiation at 2.45 GHz and at MW intensities of ~ 3 to ~ 12 W/cm2. We found that the heat production and its rate per unit volume of water in the RM solution are about one order of magnitude larger than those of liquid water at all the MW intensities examined. This indicates that water spots that are much hotter than liquid water under MW irradiation at the same intensity, are formed in the RM solution. Our findings will give fundamental information to develop effective and energy-saving chemical reactions in nanoscale reactors with water under MW irradiation, and to study MW effects on various aqueous mediums with nanoconfined water. Furthermore, the RM solution will serve as a platform to study the impact of nanoconfined water on MW-assisted reactions.

Funder

Grants-in-Aid for Scientific Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference53 articles.

1. Adam, D. Microwave chemistry: Out of the kitchen. Nature 421, 571–572 (2003).

2. Török, B. & Schäfer, C. (eds.) Nontraditional Activation Methods in Green and Sustainable Applications (Elsevier, 2021).

3. Kappe, C. O. et al. (eds.) Microwaves in Organic and Medicinal Chemistry (Wiley-VCH, 2012).

4. Leadbeater, N. E. (ed.) Microwave Heating as a Tool for Sustainable Chemistry (CRC Press, 2010).

5. Odell, L. R. & Larhed, M. Microwave-accelerated homogeneous catalysis in water. In Green Catalysis, vol. 1: Homogeneous Catalysis, Chap.4 (ed. Crabtree, R. H.) 79 (WILEY-VCH, 2009).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3