A low-cost smartphone fluorescence microscope for research, life science education, and STEM outreach

Author:

Schaefer Madison A.,Nelson Heather N.,Butrum John L.,Gronseth James R.,Hines Jacob H.

Abstract

AbstractMuch of our understanding of cell and tissue development, structure, and function stems from fluorescence microscopy. The acquisition of colorful and glowing images engages and excites users ranging from seasoned microscopists to STEM students. Fluorescence microscopes range in cost from several thousand to several hundred thousand US dollars. Therefore, the use of fluorescence microscopy is typically limited to well-funded institutions and biotechnology companies, research core facilities, and medical laboratories, but is financially impractical at many universities and colleges, primary and secondary schools (K-12), and in science outreach settings. In this study, we developed and characterized components that when used in combination with a smartphone or tablet, perform fluorescence microscopy at a cost of less than $50 US dollars per unit. We re-purposed recreational LED flashlights and theater stage lighting filters to enable viewing of green and red fluorophores including EGFP, DsRed, mRFP, and mCherry on a simple-to-build frame made of wood and plexiglass. These devices, which we refer to as glowscopes, were capable of 10 µm resolution, imaging fluorescence in live specimens, and were compatible with all smartphone and tablet models we tested. In comparison to scientific-grade fluorescence microscopes, glowscopes may have limitations to sensitivity needed to detect dim fluorescence and the inability to resolve subcellular structures. We demonstrate capability of viewing fluorescence within zebrafish embryos, including heart rate, rhythmicity, and regional anatomy of the central nervous system. Due to the low cost of individual glowscope units, we anticipate this device can help to equip K-12, undergraduate, and science outreach classrooms with fleets of fluorescence microscopes that can engage students with hands-on learning activities.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference40 articles.

1. Hergemöller, T. & Laumann, D. Smartphone magnification attachment: Microscope or magnifying glass. Phys. Teach. 55, 361 (2017).

2. Cybulski, J. S., Clements, J. & Prakash, M. Foldscope: Origami-based paper microscope. PLoS ONE 9, e98781 (2014).

3. Goldstein, B. DIY Microscope Workshops. Goldstein Lab https://goldsteinlab.weebly.com/diymicroscopeworkshops.html (2022).

4. Yoshino, K. $10 Smartphone to Digital Microscope Conversion. Instructables https://www.instructables.com/10-Smartphone-to-digital-microscope-conversion/ (2022).

5. Kim, H. et al. LudusScope: Accessible Interactive Smartphone Microscopy for Life-Science Education. PLoS ONE 11, e0162602 (2016).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3