Author:
Mittelmann Steffen,Touchet Kévin,Mao Xianglei,Park Minok,Brezinsek Sebastijan,Pretzler Georg,Zorba Vassilia
Abstract
AbstractLaser-Induced Breakdown Spectroscopy (LIBS) is a promising technology for in-situ analysis of Plasma-Facing Components in magnetic confinement fusion facilities. It is of major interest to monitor the hydrogen isotope retention i.e. tritium and deuterium over many operation hours to guarantee safety and availability of the future reactor. In our studies we use ultraviolet femtosecond laser pulses to analyze tungsten (W) tiles that were exposed to a deuterium plasma in the linear plasma device PSI-2, which mimics conditions at the first wall. A high-resolution spectrometer is used to detect the Balmer-$$\alpha$$
α
transition of the surface from implanted hydrogen isotopes (H and D). We use Calibration Free CF-LIBS to quantify the amount of deuterium stored in W. This proof-of-principle study shows the applicability of femtosecond lasers for the detection of low deuterium concentration as present in first wall material of prevailing fusion experiments.
Funder
Deutsche Forschungsgemeinschaft
U.S. Department of Energy
Heinrich-Heine-Universität Düsseldorf
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献