Abnormal thalamocortical connectivity of preterm infants with elevated thyroid stimulating hormone identified with diffusion tensor imaging

Author:

Jang Yong Hun,Kim Jinsup,Kim Sangwoo,Lee Kyungmi,Na Jae Yoon,Ahn Ja-Hye,Kim Hyuna,Kim Bung-Nyun,Lee Hyun Ju

Abstract

AbstractWhile thyroid disturbances during perinatal and postnatal periods in preterm infants with congenital hypothyroidism reportedly disrupt neuronal development, no study has considered the effect of thyroid disturbances in premature infants with subclinical hypothyroidism with elevations of thyroid stimulating hormone. We aimed to identify altered fiber integrity from the thalamus to cortices in preterm infants with subclinical hypothyroidism. All preterm infants born were categorized according to thyroid stimulating hormone levels through serial thyroid function tests (36 preterm controls and 29 preterm infants with subclinical hypothyroidism). Diffusion tensor images were acquired to determine differences in thalamocortical fiber lengths between the groups, and cerebral asymmetries were investigated to observe neurodevelopmental changes. Thalamocortical fiber lengths in the subclinical hypothyroidism group were significantly reduced in the bilateral superior temporal gyrus, heschl’s gyrus, lingual gyrus, and calcarine cortex (all p < 0.05). According to the asymmetric value in the orbitofrontal regions, there is a left dominance in the subclinical hypothyroidism group contrary to the controls (p = 0.012), and that of the cuneus areas showed significant decreases in the subclinical hypothyroidism group (p = 0.035). These findings could reflect altered neurodevelopment, which could help treatment plans using biomarkers for subclinical hypothyroidism.

Funder

National Research Foundation of Korea Grant funded by the Korean Government MSIT

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3