Experimental Protein Molecular Dynamics: Broadband Dielectric Spectroscopy coupled with nanoconfinement

Author:

Bourgeat Laëtitia,Serghei Anatoli,Lesieur ClaireORCID

Abstract

AbstractProtein dynamics covers multiple spatiotemporal scale processes, among which slow motions, not much understood even though they are underlying protein folding and protein functions. Protein slow motions are associated with structural heterogeneity, short-lived and poorly populated conformations, hard to detect individually. In addition, they involve collective motions of many atoms, not easily tracked by simulation and experimental devices. Here we propose a biophysical approach, coupling geometrical nanoconfinement and broadband dielectric spectroscopy (BDS), which distinguishes protein conformations by their respective molecular dynamics. In particular, protein-unfolding intermediates, usually poorly populated in macroscopic solutions are detected. The protein dynamics is observed under unusual conditions (sample nanoconfinement and dehydration) highlighting the robustness of protein structure and protein dynamics to a variety of conditions consistent with protein sustainability. The protein dielectric signals evolve with the temperature of thermal treatments indicating sensitivity to atomic and molecular interaction changes triggered by the protein thermal unfolding. As dipole fluctuations depend on both collective large-scale motions and local motions, the approach offers a prospect to track in-depth unfolding events.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3