Laboratory investigation of GO-SA-MWCNTs ternary hybrid nanoparticles efficacy on dynamic viscosity and wear properties of oil (5W30) and modeling based on machine learning

Author:

Sepehrnia Mojtaba,Davoodabadi Farahani Somayeh,Hamidi Arani Abolfazl,Taghavi Ali,Golmohammadi Hamidreza

Abstract

AbstractIn the present study, the properties of ternary hybrid nanofluid (THNF) of oil (5W30) - Graphene Oxide (GO)-Silica Aerogel (SA)-multi-walled carbon nanotubes (MWCNTs) in volume fractions ($$\varphi )$$ φ ) of 0.3%, 0.6%, 0.9%, 1.2%, and 1.5% and at temperatures 5 to 65 °C has been measured. This THNF is made in a two-step method and a viscometer device made in USA is used for viscosity measurements. The wear test was performed via a pin-on-disk tool according to the ASTM G99 standard. The outcomes show that the viscosity increases with the increase in the $$\varphi$$ φ , and the reduction in temperature. By enhancing the temperature by 60 °C, at $$\varphi$$ φ = 1.2% and a shear rate (SR) of 50 rpm, a viscosity reduction of approximately 92% has been observed. Also, the results showed that with the rise in SR, the shear stress increased and the viscosity decreased. The estimated values of THNF viscosity at various SRs and temperatures show that its behavior is non-Newtonian. The efficacy of adding nanopowders (NPs) on the stability of the friction and wear behavior of the base oil has been studied. The findings of the test display that the wear rate and friction coefficient increased about 68% and 4.5% for $$\varphi$$ φ = 1.5% compared to $$\varphi$$ φ = 0. Neural network (NN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gaussian process regression (GPR) based on machine learning (ML) have been used to model viscosity. Each model predicted the viscosity of the THNF well, and Rsquare > 0.99.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3