Proliferation of osteoblast precursor cells on the surface of TiO2 nanowires anodically grown on a β-type biomedical titanium alloy

Author:

Fanton Leonardo,Loria Frida,Amores Mario,Pazos M. Ruth,Adán Cristina,García-Muñoz Rafael A.,Marugán Javier

Abstract

AbstractStudies have shown that anodically grown TiO2 nanotubes (TNTs) exhibit excellent biocompatibility. However, TiO2 nanowires (TNWs) have received less attention. The objective of this study was to investigate the proliferation of osteoblast precursor cells on the surfaces of TNWs grown by electrochemical anodization of a Ti-35Nb-7Zr-5Ta (TNZT) alloy. TNT and flat TNZT surfaces were used as control samples. MC3T3-E1 cells were cultured on the surfaces of the samples for up to 5 days, and cell viability and proliferation were investigated using fluorescence microscopy, colorimetric assay, and scanning electron microscopy. The results showed lower cell proliferation rates on the TNW surface compared to control samples without significant differences in cell survival among experimental conditions. Contact angles measurements showed a good level of hydrophilicity for the TNWs, however, their relatively thin diameter and their high density may have affected cell proliferation. Although more research is necessary to understand all the parameters affecting biocompatibility, these TiO2 nanostructures may represent promising tools for the treatment of bone defects and regeneration of bone tissue, among other applications.

Funder

Brazilian research funding agency FAPESP

Spanish State Research Agency (AEI) and the Spanish Ministry of Science, Innovation and Universities

Comunidad de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3