Resistance–capacitance optimizer: a physics-inspired population-based algorithm for numerical and industrial engineering computation problems

Author:

Ravichandran Sowmya,Manoharan Premkumar,Jangir Pradeep,Selvarajan Shitharth

Abstract

AbstractThe primary objective of this study is to delve into the application and validation of the Resistance Capacitance Optimization Algorithm (RCOA)—a new, physics-inspired metaheuristic optimization algorithm. The RCOA, intriguingly inspired by the time response of a resistance–capacitance circuit to a sudden voltage fluctuation, has been earmarked for solving complex numerical and engineering design optimization problems. Uniquely, the RCOA operates without any control/tunable parameters. In the first phase of this study, we evaluated the RCOA's credibility and functionality by deploying it on a set of 23 benchmark test functions. This was followed by thoroughly examining its application in eight distinct constrained engineering design optimization scenarios. This methodical approach was undertaken to dissect and understand the algorithm's exploration and exploitation phases, leveraging standard benchmark functions as the yardstick. The principal findings underline the significant effectiveness of the RCOA, especially when contrasted against various state-of-the-art algorithms in the field. Beyond its apparent superiority, the RCOA was put through rigorous statistical non-parametric testing, further endorsing its reliability as an innovative tool for handling complex engineering design problems. The conclusion of this research underscores the RCOA's strong performance in terms of reliability and precision, particularly in tackling constrained engineering design optimization challenges. This statement, derived from the systematic study, strengthens RCOA's position as a potentially transformative tool in the mathematical optimization landscape. It also paves the way for further exploration and adaptation of physics-inspired algorithms in the broader realm of optimization problems.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3