Smoke from regional wildfires alters lake ecology
-
Published:2021-05-25
Issue:1
Volume:11
Page:
-
ISSN:2045-2322
-
Container-title:Scientific Reports
-
language:en
-
Short-container-title:Sci Rep
Author:
Scordo Facundo,Chandra Sudeep,Suenaga Erin,Kelson Suzanne J.,Culpepper Joshua,Scaff Lucia,Tromboni Flavia,Caldwell Timothy J.,Seitz Carina,Fiorenza Juan E.,Williamson Craig E.,Sadro Steven,Rose Kevin C.,Poulson Simon R.
Abstract
AbstractWildfire smoke often covers areas larger than the burned area, yet the impacts of smoke on nearby aquatic ecosystems are understudied. In the summer of 2018, wildfire smoke covered Castle Lake (California, USA) for 55 days. We quantified the influence of smoke on the lake by comparing the physics, chemistry, productivity, and animal ecology in the prior four years (2014–2017) to the smoke year (2018). Smoke reduced incident ultraviolet-B (UV-B) radiation by 31% and photosynthetically active radiation (PAR) by 11%. Similarly, underwater UV-B and PAR decreased by 65 and 44%, respectively, and lake heat content decreased by 7%. While the nutrient limitation of primary production did not change, shallow production in the offshore habitat increased by 109%, likely due to a release from photoinhibition. In contrast, deep-water, primary production decreased and the deep-water peak in chlorophyll a did not develop, likely due to reduced PAR. Despite the structural changes in primary production, light, and temperature, we observed little significant change in zooplankton biomass, community composition, or migration pattern. Trout were absent from the littoral-benthic habitat during the smoke period. The duration and intensity of smoke influences light regimes, heat content, and productivity, with differing responses to consumers.
Funder
University of Nevada's College of Science Global Water Center, UNR NSF DEB
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference73 articles.
1. He, T., Belcher, C. M., Lamont, B. B. & Lim, S. L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 104, 352–363 (2016). 2. Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150345 (2016). 3. Hoegh-Guldberg, O. et al. Impacts of 1.5°C Global Warming on Natural and Human Systems. in Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, (ed. Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. W.) 175–311 (2018). 4. Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Prospect. 41, 2928–2933 (2014). 5. Westerling, A. L. R. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150178 (2016).
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|