Effects of ultrasonic-assisted nickel pretreatment method on electroless copper plating over graphene

Author:

Peng Qingyan,Tan Xiaodong,Venkataraman Mohanapriya,Militky Jiri,Xiong Wei,Mahendran Arunjunai Raj,Lammer Herfried,Kejzlar Pavel

Abstract

AbstractIn this paper, copper deposited graphene was fabricated through electroless plating. A novel and facile pretreatment method is introduced based on ultrasonic treatment with nickel nano-particles as the catalytic core. This method abandons the sensitization and activation process in the traditional pretreatment that reduces the time and economic cost dramatically. The static contact angle was determined by an Olympus BX51M optical microscope. The surface morphology and plating composition were characterized via scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS), the infrared radiation (IR) transmittance spectra of the copper plated graphene were measured by Fourier transform infrared spectroscopy (FTIR), the layer structure was measured by Raman spectrum, the phase identification was identified by X-ray diffraction (XRD), the thermogravimetric analysis (TGA) (Q5000 TA instruments, USA) was carried out to detect the thermal characteristics. The electrical resistivity of copper-plated graphene was performed in an especially designed apparatus. The results show that the surface of graphene is coarsened, and the size is reduced after ultrasonic treatment, which can facilitate the nucleation and fine particle distribution of metal. The electroless plated efficiency of copper of the nickel pretreatment copper-plated graphene is 64.27 wt%, higher than that of generic copper-plated graphene at 58.62 wt%. The resistivity decreases rapidly from 1.69 × 10–2 Ω cm of the original Gr to 0.79 × 10–2 Ω cm of Cu/Ni@Gr due to the large number of fine copper particles scattered around the graphene.

Funder

Ministry of Education Youth and Sports of Czech Republic

Grantová Agentura České Republiky

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3